DESIGNING LARGE-SCALE PHOTONIC INTEGRATED CIRCUITS (PICs)

Muhammad Umar Khan, Yufei Xing and Wim Bogaerts
DESIGNING LARGE-SCALE PHOTONIC INTEGRATED CIRCUITS (PICs)

Muhammad Umar Khan, Yufei Xing and Wim Bogaerts
OUTLINE

• Large scale PICs
 • Fabrication imperfections/variability
 • Silicon-on-insulator (SOI) waveguide

• Design flow
 • Layout aware yield prediction
 • Parameter Extraction & spatial variability

• Summary
PHOTONIC LARGE-SCALE INTEGRATION IS HERE

Photonic switch
Cheng, et al., Optics Express 2018

32 × 32 SiPh switch matrix
D. Celo et al. 2016

Quantum silicon chip
J. Wang, et al. Science 2018
PHOTONIC LARGE-SCALE INTEGRATION IS HERE

• Large scale PICs
 • Complexity
 • Functionality 😊

• Fabrication imperfections
 • Linewidth and thickness
 • Not as desired 😞
 • Fabrication variations accumulate
 • Performance degradation 😞
 • Lower fabrication yield
 • Expensive 😞
FABRICATION IMPERFECTIONS (VARIABILITY)
SILICON PHOTONIC WAVEGUIDE

\[n_1 (= 3.5) > n_2 (= 1.45) \]

Si substrate

silicon-oxide

silicon

200 nm

500 nm

200 nm
DIMENSIONAL DEPENDENCE OF A WAVEGUIDE

Effective index for different widths

Effective index for different heights
SENSITIVITY OF SILICON PHOTONICS

Silicon photonic waveguides are sensitive to

- geometry
- stress
- temperature
- …

\[
\frac{\partial \lambda}{\partial w} \approx 1 \text{ nm/nm}
\]

\[
\frac{\partial \lambda}{\partial h} \approx 2 \text{ nm/nm}
\]

\[
\frac{\partial \lambda}{\partial T} \approx 0.08 \text{ nm/K}
\]

where

1 nm \approx 10 \text{ K}

1 nm \approx 20 \text{ K
Sources of Non-uniformity

- **Reticle/Mask**
 - CD uniformity
 - Flatness
 - Transmission

- **Litho tool**
 - Exposure dose
 - Slit uniformity
 - Chuck flatness
 - Focus stability
 - Scan direction
 - Source spectrum

- **Resist process**
 - BARC uniformity
 - Resist uniformity
 - PEB °C Uniformity
 - Developer
 - Metrology

- **Wafer**
 - Wafer flatness
 - Stack uniformity
 - Topography

- **Etch process**
 - Plasma Chemistry
 - Coil power stability
 - Bias stability
 - Resist coverage
 - °C stability
 - Metrology
VARIABILITY EFFECTS WORK ON DIFFERENT SCALES

intra-die

distance

intra-wafer (die-to-die)

wafer-to-wafer

lot-to-lot

time
Describing Variability at Different Levels

Process Conditions
- Exposure dose
- Resist age
- Plasma density
- Slurry composition

Device Geometry
- Line width
- Layer thickness
- Sidewall angle
- Doping profile

Optical Device Properties
- Effective index
- Group index
- Coupling coefficients
- Center wavelength

Circuit Properties
- Optical delay
- Path imbalance
- Tuning curve

System Performance
- Insertion loss
- Crosstalk
- Noise figures
- Power consumption
DESIGN WORKFLOW

• Parameter Extraction & Spatial Variability
 • Geometrical parameters
 • Waveguide width
 • Waveguide thickness
 • Optical parameters
 • Mapping of optical parameters to geometrical parameters

• Layout-Aware Yield Prediction
PARAMETER EXTRACTION & SPATIAL VARIABILITY
PARAMETER EXTRACTION

• Metrology measurements
 • Scanning electron microscope (SEM)
 • Atomic force microscope (AFM)
 • Time consuming 😞
 • Expensive 😞
 • Destructive 😞
 • Extraction error (~nm) 😞
 • Few places on the wafer/die 😞

• Optical Measurements
 • Fitting of measurements to simulations
 • Mapping of optical parameters to geometric parameters
 • Smaller extraction errors (sub-nanometer) 😊
 • Non-destructive 😊
 • Many places over the wafer/die 😊
• Extract parameters \((n_{\text{eff}}, n_g) \) using wafer scale measurements
• Link \(n_{\text{eff}}, n_g \) to width and thickness
• Cannot separate straight and bend waveguide

Lu, Optics Express 2017
EXTRACTION - OPTICAL MEASUREMENTS OF TWO MZIs

Low order
- Inaccurate extraction
- Tolerant to overall variation
- Set reference effective index

High order
- Accurate extraction of group index and effective index

Low order MZI

ΔL

High order MZI

$m \cdot \lambda_{res} = n_{eff} \cdot \Delta L$

$n_g = \frac{\lambda_{res}^2}{FSR \cdot \Delta L}$

Spectrum
- n_{eff}, n_g: Straight waveguide
- Length difference between two arms
MEASUREMENT SITES

$$m \cdot \lambda_{res} = n_{eff} \cdot \Delta L$$

$$n_g = \frac{\lambda^2_{res}}{FSR \cdot \Delta L}$$

25 dies
44 copies of MZI pairs per die

$$(n_{eff}(\lambda_0), n_g(\lambda_0)) \rightarrow (w, t)$$

Samples layout
44 copies of MZIs
\[\Rightarrow n_{\text{eff}}, n_g \]
DIRECTIONAL COUPLERS

Treat coupler as circuit:

- 4 waveguides with their sensitivity to w, t
- 1 logical coupler with sensitivity to w, t

Coupling model = dispersive: straight + bends

Sensitivity calculated using mode solver + FDTD

\[K = \cos^2 (\kappa_0 + \kappa' L) \]

\[\kappa_0(\lambda) = \kappa_0(\lambda_0) + \frac{\partial \kappa_0}{\partial \lambda} (\lambda - \lambda_0) + \frac{1}{2} \frac{\partial^2 \kappa_0}{\partial \lambda^2} (\lambda - \lambda_0) \]

\[\kappa'(\lambda) = \kappa'(\lambda_0) + \frac{\partial \kappa'}{\partial \lambda} (\lambda - \lambda_0) + \frac{1}{2} \frac{\partial^2 \kappa'}{\partial \lambda^2} (\lambda - \lambda_0) \]
WORKFLOW TO EXTRACT GEOMETRY PARAMETERS

Extraction error of this experiment

Width: 0.37 nm

Thickness: 0.26 nm

Match optical measurement with circuit simulation to extract behavior parameters

\[n_{eff}(\lambda_0), n_g(\lambda_0), \ldots \]

Obtain geometry parameters

\[\left(n_{eff}(\lambda_0), n_g(\lambda_0)\right) \xrightarrow{(w,t)=f\left(n_{eff}(\lambda_0), n_g(\lambda_0)\right)} (w,t) \]

Xing et al., Photonics Research 2018
SYSTEMATIC INTRA-DIE VARIATION

Xing et al., GFP 2018
SYSTEMATIC INTRA-WAFER VARIATION
LAYOUT-AWARE YIELD PREDICTION
YIELD PREDICTION SCHEME

- **PDK + sensitivity**
- **Building blocks + models**
- **Circuit netlist + layout**
- **Sensitivity of model parameters to fabrication parameters** \(\frac{\partial n_{eff}}{\partial w} \), ...
- **Wafer maps (or model) for fabrication parameters**
- **Place circuit on wafer and adjust model parameters**
- **Monte-Carlo on dies and wafers**
- **Yield prediction**

Circuit Simulation

Variability
- **Pass**
- **Reject**

Transmission [dB]

- **wavelength**
 - 1.530
 - 1.535
 - 1.540
 - 1.545
 - 1.550
 - 1.555
 - 1.560
 - 1.565
 - 1.570

crosstalk
Example: MZI Lattice Filter

Simple (but sensitive) building blocks

- directional couplers
- waveguide delay lines

FSR = 800GHz (~6.4nm)

Pass-band = 80GHz

Guard band = 80GHz

Crosstalk (rejection) = -15dB

Center wavelength = 1.55μm

Long directional couplers

- dispersive
- very sensitive
Wafer Maps: Width and Thickness

Most straightforward parameters

- Linewidth map
 - Simplex noise model
 - \(radius = 200\mu m \)
 - \(amplitude = 1\text{nm} \)

- Thickness map (measured)
 - \(range = 213 - 219\text{nm} \)

Bogaerts et al., JSTQE 2019
Sampling Points in the Layout

All building blocks with a model will sample all variables \((w, t)\)

- waveguides: \(n_{eff}, n_g\)

- logical couplers: \(\kappa', \frac{\partial \kappa'}{\partial \lambda}, \frac{\partial^2 \kappa'}{\partial \lambda^2}, \kappa_0, \frac{\partial \kappa_0}{\partial \lambda}, \frac{\partial^2 \kappa_0}{\partial \lambda^2}\)

- Sampling points are aggregated over the component: results in averaging, same as in fabricated devices
Monte-Carlo Simulations Over a Wafer

10mm spacing

277 dies on a wafer

Using CAPHE circuit simulator (Luceda)

1000 wavelength points
YIELD MAPS

Without absolute wavelength spec

With absolute wavelength spec:
peak = 1.55μm ± 80 GHz
PEAK WAVELENGTH: LARGELY AFFECTED BY THICKNESS

Wafer thickness map

yield on wavelength spec
IMPROVE FILTER?

Sweep number of taps

- More taps: better (box-like) filter
 - higher rejection ratio
 - sharper edges
- With variability
 - phase errors add up
 - coupler errors add up

![Diagram](image)
Yield Analysis

Increase number of taps:

- **2**: not enough taps to reach rejection ratio
- **4-8**: good quality
- **10-14**: variability kills performance

Best: 6 taps

Yield specifications:
- \(\Delta \lambda_{\text{peak}} < 40 \text{GHz} \mu\text{m} \)
- Rejection < \(-15\) dB
- Pass band ripple < 1 dB
- Transmission > 1 dB

![Graph showing yield vs. number of couplers]

- Good devices with too large wavelength offset
- Good devices with acceptable wavelength offset

Image credit: Ghent University - imec
SUMMARY

• Fabrication Imperfections
 • Variability

• Variability determines yield in large circuits
 • Variability should be considered at design stage

• Need layout awareness for yield prediction
PHOTONICS RESEARCH GROUP

Muhammad Umar Khan
Post-Doctoral Researcher
E umar.khan@UGent.be
T +32 465 84 75 64

@PhotonicsUGent

www.photonics.intec.ugent.be
3rd Silicon Photonics Design Course

17-21 June 2019 – Ghent (Belgium)

- Gain fundamental understanding of silicon photonics design
- Circuits, components, simulation, layout, tape-outs, …
- 5 days hands-on design labs
- Get a design fabricated and measured

http://epixfab.eu/trainings/upcoming-trainings/spdc19/