THERMALLY-TUNED PHOTONIC LINKS TOWARD OPTICAL NETWORKS ON INTERPOSER
Silicon Photonics moves forward for long distance optical wireline transceiver
• 100 / 400 Gigabit Ethernet

Large-scale electronics longs for low-latency low-energy dense communication

Optical short-range communication has been a long-term target for years
• Needs compact optical devices to maximize bandwidth per mm² ➔ Microring optical resonators
Microrings & Photodiodes are compact & fast
• Area $< 100\mu m \times 100\mu m$ – Bandwidth > 10 GHz

Waveguides have low latency & low losses
• Propagation ~ 10 cm/ns – Losses ~ 0.1 dB/cm

But Chip activity creates temperature changes \Rightarrow disturbs the microrings
Experiment: 4Gbps modulation under laser wavelength wobulation 30pm_{pp} at 100Hz

Simulate thermal effect of workload changes on package (~1-10ms time constant)

CIRCUIT OBJECTIVE: PRESERVE COMMUNICATION DESPITE ENVIRONMENTAL PERTURBATION

No wobulation

Wob+Thermal tuning deactivated

Wob.+Thermal tuning activated
Context: Silicon photonics for short-range communication

Silicon-photonic devices

Closed-loop analog tuning & WDM remapping

TOWARD demonstrator

Measurements & benchmarking
Compact optical devices

- Highly resonant: Q-factor 10,000–30,000

Any refractive index change shifts the resonant wavelength

PN or PIN diode junction can be created inside the ring for electrical control

- Different uses depending on diode
 - PN rings can be used as modulators (> 10 Gbps)
 - PIN rings can be used as filters (<500 MHz) for routing and wavelength demultiplexing

But Subject to Temperature variations

⇒ Low-frequency resonance shift

\[\lambda_{res} = \frac{P n_{eff}}{k} \]
MODULATOR PRINCIPLE, THERMAL SENSITIVITY DA/DV & DΛ/DT MEASUREMENTS

13.6 pm/V modulation efficiency

76 pm/K thermal sensitivity

Optics workshop – DATE 2018 | Yvain Thonnart
Heating using doped Silicon
• Resistive path inside the ring

Average ring temperature increase:
• Simulation: \(\frac{dT}{dP} \sim 2K/mW \)
• Measurements: \(\frac{d\lambda}{dP} \sim 40\text{pm/mW} \)

70nm Silicon film to preserve electrical connectivity for modulation

Could be improved by 10×
• Ti heater
• Back-side selective substrate removal
Optical measurements
- square wave on heater
- Test probes on Photonic die

Exhibits a 2nd order response
- distorsted due to lorentzian λ response
- local heating around 4μs
- heat diffusion around 25μs

Response modeled as a laplace transform
- Heat diffusion: dominant pole at 25μs
- Local heating: zero at 5μs, secondary pole at 2μs

\[H(s) = k \cdot \frac{1 + 5\mu s \cdot s}{(1 + 25\mu s \cdot s)(1 + 2\mu s \cdot s)} \]
Ring resonant wavelength unpredictable at design time
- 1 nm thickness variation
 \(\approx 1 \text{ nm resonance shift} \)

But finesse, free-spectral-range & amplitudes are well-controlled

Thermal tuning is used to align ring resonance on laser source
- Low-frequency control

Voltage is used to modulate light
- High frequency modulation
When total data throughput is sufficient: use several wavelengths

- Reduces the required shift for thermal tuning
 - From at most 1 FSR to at most 1/n FSR
Context: Silicon photonics for short-range communication

Silicon-photonic devices

Closed-loop analog tuning & WDM remapping

TOWARD demonstrator

Measurements & benchmarking
Ring resonance can be tracked by transmission on drop port

- Setpoint on through port corresponds to a power value on drop port
- Photodiode converts this to photocurrent
- Analog control used to match photocurrent with reference
- Joule heating by resulting heater driver current
Track heater command for minimum and maximum heating
 • Allow for 20% overlap

When overheat is reached
 • better switch to a higher wavelength ➔ Cool down
& Vice-versa for underheat

Use analog comparators on heater voltage
Peak edges have different signs for dP/dT

- One side is stable and the other is not

Swapping signal & reference in control loop allows switching stable edges

- Increasing/decreasing the reference allows leaving metastable state

Transition from one peak to another done in two steps

- Ring is never driven in open-loop
Context: Silicon photonics for short-range communication

Silicon-photonic devices

Closed-loop analog tuning & WDM remapping

TOWARD demonstrator

Measurements & benchmarking
ELECTRONIC DIE, PHOTONIC DIE & ASSEMBLY

TIA w. tuning
& 50Ω output buffers

Tx w. tuning

TIA+Rx w. tuning

Functional area
• Heater control
• 40×40μm²/λ
• 40×40μm²/WDM
• Tx Driver
• 40×40μm²
• Rx Driver
• 80×40μm²

Dominated by 6 Cu-Pillar area
• Pitch 40μm
• 2 for Modulator
• 2 for Photodiode
• 2 for Heater

DC supplies & config. wirebonding

Fiber array

Level RF CoB wirebonding

Ring & photodiode

Grating coupler array

Optics workshop – DATE 2018 | Yvain Thonnart | 19
Experimental Setup

- **Optics Workshop**
 - Date: 2018
 - Yvain Thonnart

DC Configuration
-+=

- **Tunable-wavelength Laser Source**
- **LF Laser Wavelength Controller**
- **RF PRBS @10Gbps**
- **DC Config. Laptop**
- **CMOS+SiPho DUT**
- **Ext. Optical Modulator**
- **Oscilloscope LF Optical Monitoring**
- **RF Oscilloscope/Analyzer**
- **Eye Diagram**
- **Tuning Monitoring**

Simulate Environmental Variations

In/Out Fiber Array
- **DUT Under Fiber Array Probe**
- **In/Out RF Signals**
- **RF In/Out**
- **Laser**
- **LF Monitoring**

RF PRBS

Thresholds, tgt. optical power…

DC Configuration Board

In/Out Fiber Array

To laser sources & optical scope
Context: Silicon photonics for short-range communication

Silicon-photonic devices

Closed-loop analog tuning & WDM remapping

TOWARD demonstrator

Measurements & benchmarking
THERMAL TUNING WITH LAMBDA SWEEP

Optical power (A.U.)
Laser wavelength (nm), increasing λ sweep at 1nm/s

Heater lock during λ sweep

Reference power configuration
chip off
0 (running, cold)
10
20
31
44
63 (max heat)

Ref. power too high

Laser wavelength (nm), increasing λ sweep at 1nm/s

Heater Joule Power (μW)

Optics workshop – DATE 2018 | Yvain Thonnart | 22
Wavelength locking on reference level on thermal control activation / remapping

- Off-resonance
- 100μs lock-time
- Near-resonance @-3dB

Thermal control stability under 30pmpp wavelength wobulation

- Off-resonance
- Disabled @900Hz
- Enabled @900Hz
- Res-peak @mod off

Pheat=0.4mW
ROBUST ELECTRO-OPTICAL LINK OPERATION UNDER PERTURBATION

END-TO-END COMMUNICATION: RX AND TX RINGS TUNED TO THE SAME WAVELENGTH
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration scheme</td>
<td>3D face-to-face</td>
<td>2D proximity wirebonding</td>
<td>Monolithic</td>
<td>3D face-to-face</td>
</tr>
<tr>
<td>Technology</td>
<td>130nm SOI SiPh 40nm CMOS</td>
<td>130nm SOI SiPh 65nm CMOS</td>
<td>45nm CMOS SOI</td>
<td>100nm SOI SiPh 65nm CMOS</td>
</tr>
<tr>
<td>Datarate</td>
<td>20 Gbps</td>
<td>24 Gbps</td>
<td>10 Gbps</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Ring Q factor</td>
<td>~5500</td>
<td>~5000 Tx, ~18000 Rx</td>
<td>~11600</td>
<td>~30000</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1550nm</td>
<td>1550nm</td>
<td>1180nm</td>
<td>1310nm</td>
</tr>
<tr>
<td>WDM channels</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Thermal tuning</td>
<td>Open-loop</td>
<td>Digital closed-loop avg/peak det.</td>
<td>Digital closed-loop bit-statistical (Tx only)</td>
<td>Analog closed-loop with digital reconfiguration</td>
</tr>
<tr>
<td>Wavelength remapping</td>
<td>No / External</td>
<td>No / External</td>
<td>No / External</td>
<td>Integrated <1ms remap time*</td>
</tr>
<tr>
<td>Heater efficiency</td>
<td>0.16nm/mW</td>
<td>0.16nm/mW</td>
<td>1.25nm/mW</td>
<td>0.04nm/mW</td>
</tr>
<tr>
<td>Tuning ctrl. power</td>
<td>N.A. – External</td>
<td>170μW</td>
<td>720μW</td>
<td>150μW</td>
</tr>
<tr>
<td>Tuning precision</td>
<td>N.A. – External</td>
<td>Not reported</td>
<td>5pm</td>
<td>0.5pm</td>
</tr>
<tr>
<td>Tuning lock-time</td>
<td>N.A. – External</td>
<td>700ms</td>
<td>6.7ms</td>
<td>120μs</td>
</tr>
<tr>
<td>Tuning bandwidth</td>
<td>N.A. – External</td>
<td>~1Hz (from transient meas.)</td>
<td>~1Hz (from transient meas.)</td>
<td>900Hz</td>
</tr>
<tr>
<td>Tuning area / ring</td>
<td>0.04mm² (pad area)</td>
<td>0.03mm²</td>
<td>0.0024mm²</td>
<td>0.0016mm²</td>
</tr>
<tr>
<td>Tot. driver area / λ</td>
<td>0.14mm² (Tx or Rx)</td>
<td>0.1 / 0.06 mm²(Tx / Rx)</td>
<td>0.0205mm² (Tx)</td>
<td>0.0096mm² (Tx or Rx)</td>
</tr>
<tr>
<td>Bandwidth density</td>
<td>142 Gbps/mm²</td>
<td>300 Gbps/mm²</td>
<td>391 Gbps/mm²</td>
<td>1 Tbps/mm²</td>
</tr>
</tbody>
</table>

* Remapping simulated for heater efficiency of 1.25nm/mW (not attained due to lack of selective substrate removal as in [5])
3D-stacked CMOS-on-Si-photonic 10Gbps transceiver chip for short-range optical communication

• Focus given on digitally-supervised analog wavelength stabilization and remapping using microring heaters
• Wavelength locking on a constant wavelength achieved in 120μs
• Stability of the tuning is maintained under 900Hz environmental fluctuation.
• Total CMOS footprint for control and drivers is 0.01mm² per microring for up to 1Tbps/mm² communication density.
Thank you!

With special acknowledgments to all contributors & collaborators:

Mounir Zid, José Luis Gonzalez Jimenez, Guillaume Waltener, Robert Polster, Olivier Dubray, Florent Lepin, Stéphane Bernabé, Sylvie Menezo, Gabriel Parès, Olivier Castany, Laura Boutafa, Philippe Grosse, Benoît Charbonnier, Alexandre Siligaris, Sébastien Martin, Frédéric Hameau, Jérôme Prouvée, Christian Bernard, Eric Guthmuller, Marie-Sophie Redon, Sylvain Choisnet, Pascal Vivet, Benjamin Caillat, Edouard Grellier, Maryse Fournier, Vincent Reboud, Benjamin Blampey

Eric Cassan, Charles Baudot, Sébastien Le Beux, Jiang Xu, Sébastien Rumley, Ayse Coskun & their respective groups