Mask Layout Challenges for Silicon Photonics
Session IV: Design Automation and Methodologies

MARCEL VAN DER VLIET
DESIGN, AUTOMATION & TEST IN EUROPEAN CONFERENCE
OPTICAL/PHOTONIC INTERCONNECTS FOR COMPUTING SYSTEMS
MARCH 31ST 2017
Outline

• PhoeniX Software
• Discretization
• Design Intent
• Design Rule Checks
• PDA – EDA Integration
PhoeniX Software

We enable the easy and cost-effective realization of integrated photonics chips and systems

Partnerships
with foundries, software vendors, design houses, universities, ...

PIC Design Suite
OptoDesigner

- Chip & Mask Layout
- Design Rule Checking
- Process Flow Visualization
- Mode & Propagation Simulations
- Photonic Building Block platform
- EDA & PDA 3rd party interfaces
- PDKs and packaging templates to facilitate manufacturability

Training & Support
- In-depth photonics design training
- MPW training with partners
- Global support team
- On-site training and support
- PDK development

Customer Impact
- Reduced time to market
- Improved innovation process
- Flexibility in design flow
- Works with all technologies
- Increased efficiency
- Scalability of design & manufacturing process

(C) 2017. ALL RIGHTS RESERVED. PHOENIX SOFTWARE.
EDA versus PDA

Manhattan versus “Erice” patterns

Manhattan versus curvilinear patterns
Non-Manhattan / curvilinear design

Waveguide routing requires a curved format instead of rectilinear/Manhattan-style routing to ensure that light stays in a waveguide. Simulation of a curved waveguide with different radii. Image courtesy of Lumerical Solutions, Inc.
Curve Discretization

From ideal (analytical) curve
To a discretized polygon
Mapped onto GDS grid

Need for tools to translate ideal curves (Design Intent) into discretized polygons, controlling phase relations
Mask layout impacts:

- **Losses**
 - Obtaining smooth curves and side-walls
 - Mask orientation of waveguides (due to writing direction of mask)

- **Back Reflection**
 - Smooth curves and side-walls
 - Limits on angle changes (radius)

- **Phase Changes**
 - Width (and height) control of waveguides (1 nm -> 125 GHz)
 - Changes in optical path-length
Impact of optical path-length

Example: Arrayed Waveguide Grating

It is in fact a (de)multiplexer for light. Different colors (data streams) are filtered into different waveguides.

The geometry determines the optical performance, and can be calculated through simulations from specifications like bandwidth, number of output channels, channel spacing, etc.

Phase errors resulting from:

1. errors due to mismatches in the optical path lengths in the branches in the array
2. stochastical errors from fabrication variations
Generic (EDA) scripting languages

Example of the description of a **sine-bend** taken from a Cadence Virtuoso (SKILL) p-cell as used in a silicon photonics PDK

Same applies to Mentor Graphics AMPLEx or generic languages like Matlab, Python, ...
Design for Manufacturing

• Fabrication -> cross-section -> performance

Waveguide Performance

<table>
<thead>
<tr>
<th>Photonic Components</th>
<th>single-mode</th>
<th>dual-mode</th>
<th>bends</th>
<th>prop. loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w < 2.3 μm</td>
<td>w < 3.7 μm</td>
<td>R=5000μm</td>
<td>0.5-1.5 dB/cm</td>
</tr>
<tr>
<td></td>
<td>w < 2.4 μm</td>
<td>w < 3.7 μm</td>
<td>R=500μm</td>
<td>0.5-1.5 dB/cm</td>
</tr>
<tr>
<td></td>
<td>w < 1.2 μm</td>
<td>w < 2.5 μm</td>
<td>R=150μm</td>
<td>0.5-1.5 dB/cm</td>
</tr>
</tbody>
</table>

After fabrication there is a deviation of the width from the mask layout to the fabricated waveguide. This underetch is 200 nm for the E200 waveguides, 300 nm for the E600 waveguides, and 500 nm for the E1700 waveguides.
From Design Intent to GDSII

- Fabrication \rightarrow cross-section \rightarrow performance

Designer:

Process:

Ideal/theory

Not guided
From Design Intent to GDSII

- Fabrication \rightarrow cross-section \rightarrow performance

Designer:

Process:

OptoDesigner: mask widening to compensate underetch

Ideal/theory

Not guided

Guided
Real life example for Design Intent

From design intent to final mask layout:

- Calculating the required shapes, given the design intent and the fabrication information
- Turning these into polygons, given a maximum allowed path error
- Placing the polygons into the required mask layers, including sizing, inversion, boolean operations, etc.
- Checking design rules
- Exporting mask (GDS2) files

AWG example: from intended waveguide or “logical” design into actual mask or “GDS” design to fabricate with the correct waveguide dimensions (cross section)
Using Design Intent in the UCSB PDK

Optimizing polygons snapped to the grid to avoid translation and phase errors is very important in photonics.
Heterogeneous SOI & III-V Integration – PDK Available

Two phase matched delaylines (SOI) measure rotation angle of gyroscope

Widely tunable laser (III-V) enables line measurement of phase change

UCSB Heterogeneous SOI & III-V Integration – PDK available

InGaAs PIN PD AlGaInAs DFB AlGaInAs EAM 1×8 (De)Mux

Broadband MZI switch array

More than 400 Photonic Building Blocks in one PIC! 😊

8 × 8 × 40 Gbps fully integrated silicon photonic network on chip, Zhang et al., 2334-2536/16/070785-02 Journal, 2016 Optical Society of America
DRC Design Rule Checks

Fabrication errors can lead to high costs and unwanted delays, however, they can be prevented by using verification and Design Rule Checks (DRC).

Both for academic research as well as commercial product development, it is a key step in the whole design flow from initial concept to manufacturable mask layout.
DRC example Notch Check

Notch too small

Notch large enough

Rounding of a square feature (the end of the waveguide) as a result of the distance to surrounding features (or non etched surfaces)
Challenges for Calibre

Silicon photonics components are usually formed by curvilinear geometries (non-Manhattan shapes). Traditional IC DRC tools are incompatible with these geometries, resulting in false errors reported during the physical verification phase.

MOHANED ELSHAWY, MENTOR GRAPHICS MGC 06-16 TECH14370
Conditional and multidimensional DRC

\[\alpha = \text{Angle(rod)}, \quad \alpha_c = f(\text{Width(rod)}) \]

Then, \(\text{Thin}_{\text{rod}} = \frac{\alpha}{\alpha_c} > 1 \)
Situation today

- Challenges we see customers and foundries running into:
 - Increasing complexity of PIC designs
 - Significant waveguide routing challenges
 - Limited circuit simulation capabilities with validated models
 - Design verification: design rule checking and layout vs schematic
 - Co-design of electronics and photonics

To support the industry in the transition from research to commercial product development, we need integrated design flows supporting a design for manufacturability design strategy, making use of strengths of both PDA as well as EDA tools
EDA – PDA integration
Example of 3-party collaboration

- Collaboration announced in December 2015
- Schematic Driven Layout flow, centered around a PDK approach
PhoeniX Software’s Virtuoso integration with PDA-Link access point into all PhoeniX Software’s PIC design routines

All photonics parts are provided by PhoeniX Software technology

Overcoming the grid-based “Manhattan” design limitations in traditional IC design tools
All angle in Virtuoso

- Fully Parameterized
- Path Length Difference
- Modulator Length
- ...
- All Angle
Summary

- Discretization impacts device performance
 - Good algorithms required

- Technology dependencies can create complex tasks
 - Need good PDKs
 - Hybrid PDK design environment

- Design rule checks of EDA are not sufficient
- Need integration between EDA and PDA tools
www.phoenixbv.com
marcel@phoenixbv.com